
Therrnochimicu Acta, 64 (1983) 195-205 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

195 

ITERATIVE NUMERICAL AND GRAPHICAL PROCEDURES FOR 
DETERMINING KINETIC PARAMETERS USING FOUR TG DATA 

PAIRS 

J.E. HOUSE, Jr. and D.K. TCHENG 

Department of Chemistry, Illinois State University, Normal, IL 61761 (U.S.A.) 

(Received 4 November 1982) 

ABSTRACT 

Using four (a, T) data pairs, an equation has been obtained from which E/R is 
eliminated. One side of the equation is a function of a,, a*, T,, T2, and n, and the other is a 
function of as, a4, T,, T4, and n. The two functions have a singular point at the correct value 
of n. An iterative numerical method with step refinement has been developed for determining 

n using a programmable calculator. A graphical method has been developed that employs a 
segment expansion procedure. In this procedure, implemented using a pocket computer, the 
region near the correct n is successively expanded until the point of intersection is determined 
to the desired accuracy. 

INTRODUCTION 

Numerical methods for identifying the reaction order, n, and the activa- 
tion energy, E, for reactions following the rate law 

are efficiently carried out using microcomputers and programmable calcula- 
tors [l-9]. Most conveniently, the two-point integrated form 

ln 

[ 

1 - (1 - ai)‘-n 

1 - (1 - a,+,)‘-” (+j*]=:(&-$) 

is used with a series of (a, T) data [2,8]. Recent iterative methods involve 
different approaches to approximating the temperature integral [2-61 or 
methods of iterating to determine the value of n that meets some conditional 
requirement. First, using the left-hand side of eqn. (2) as f( a, T, n) and the 
right-hand side as f(T), the requirement can be used that the intercept must 
be zero for the correct value of n when f(a, T, n) is plotted against f(T) 
using various values for n [2]. Second, an approximately correct value of 
E/R is established based on an assumed value of n using small values of a. 
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Then, using large values of (Y, the value of n is iterated to find the value that 
yields the correct value of E/R [9]. We describe here two new methods of 
finding n and E using programmable calculators and pocket computers. 

METHODS 

General procedure 

We will assume that four values (Y,, (Y*, (Ye, and aLq are known at four 
temperatures T,, T,, T,, and T4, respectively. Further, we will assume that 
(Y, < ff2 < (Yj < (Yq. The present method makes use of the two-point equation, 
eqn. (2), which can be written as 

E _=- 
R (3) 

By considering an analogous equation for the points ( CQ, T3) and ( CQ, T4)> 
elimination of E/R yields 

In 
1 -(l -(Y,)‘-~ 

l--(1 -(Y2y 
In 

-= (4) 

Since both sides of eqn. (4) are equal to E/R, the two sides will be equal to 
each other only when n has the correct value. It is a characteristic of the E/R 
values that they are too small for values of n that are less than the correct 
value [ 1,9]. Further, the E/R values are smaller for larger values of (Y for a 
given value of n. Thus, it is possible to start with n = 0 and find that the 
left-hand side of eqn. (4) is greater than the right-hand side (unless, of 
course, n = 0 is the correct value). This will always be true if the condition 
(Y, < a2 < (Y) < LYE is met. The basic problem is to determine the value of n for 
which eqn. (4) is correct. We have developed an iterative numerical approach 
and a graphical method to determine the value of n meeting this condition. 
Both methods are rapid and are easily adapted to machines other than those 
described here. 
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Iterative numerical procedure 

The computation makes use of four (a, T) data pairs and computes the 
left-hand side (L) and the right-hand side (R) of eqn. (4). A comparison of L 
and R is made to determine if L > R, which indicates that n is less than the 
correct value. If it is, then the value of n is incremented by An and the 
process is repeated until L < R. At that point, n is decremented by An and 

the step refinement of An takes place (An + An/2). In that way, n is 
reduced to its value in the previous cycle, but the next increment is by An/2. 

Compute (Ti +,/Ti I* 

and (l/Ti +,I - (1 /Ti) 

4 
Compute 

L = f (a,, 2t T,, 2~ n 1 

I 
Compute 

R = f (a, , 4, TX 4, n 1 

n-n +An 

n=n -An 

Display n 

1 

Display E 

+ 

Fig. 1. Flow chart for the iterative numerical method. 
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When a trial value of n is too large, indicated by L < R, it is reduced first 
and then the refinement of An occurs so that n is approached from below in 
increments of decreasing size. After n is determined to the desired accuracy, 
the value of E can be calculated from the value of L or R since they are 
essentially equal. 

In carrying out the computation, the initial value for An must be specified. 
Also, some criterion for the L = R condition must be set to indicate that L is 
sufficiently close to R. While it is possible to integerize L and R are iterate 
until L = R, this is hardly necessary or practical. It is necessary only to find 
a value of n such that L is approximately equal to R. In this case, the 
condition JL - R] < K has been used. As will be shown later, a value of K = 5 
is perfectly adequate to assure that n is sufficiently accurate. Since a value of 
E = 100 kJ mole-’ corresponds to a value of E/R = 12027, this conditional 
test is sufficiently precise to assure an accurate result, and it is quickly met 
by the iteration scheme. 

The computation was carried out using a Hewlett-Packard HP-34C pro- 
grammable calculator. A flow chart for the computation is shown in Fig. 1 
and a listing of the program appears in Appendix 1. From the flow chart, it 
is possible to adapt the algorithm to other microcomputers and programma- 
ble calculators. 

Graphical procedure 

From the foregoing discussion and previously published E/R data [ 1,9], it 
is readily apparent that if the left-hand side of eqn. (4) is computed using 
two (a, T) data pairs and various n values, a curve is generated (L vs. n). 
Depending on how small the a values are, the line will be reasonably straight 
and of small slope. However, if the right-hand side of eqn. (4) is used where 
aj and a4 are somewhat larger than ar and a*, the relationship of R vs. n will 
deviate from linearity and will always have a slope greater than that of L vs. 
n. Consequently, the two curves will intersect (L = R) at some “correct” 
value of n [ 11. 

In the program, the variable name Y 1 is used to denote the left-hand side 
of eqn. (4), A is used in place of a, and the variable name X is used for n. 
Thus, using the variable names as they are encountered in the program, the 
left-hand side of eqn. (4) is written as 

(5) 

Similarly, Y2 is written as a function of A3, A4, T3, T4, and X. Thus, the 
graphical method consists of finding the point where variables Yl and Y2 
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intersect. The variables Yl, Y2, and X are used because the method can be 
applied to any two equations by changing program lines 190 and 240 to 
compute the desired functions and by making an appropriate change in the 
range and domain. 

A graphical solution is carried out using a computer program written in 
BASIC for the Radio Shack TRS-80 Model PC-2 pocket computer. The 
program uses features of both the computer and the plotter to solve 

Set variables 
to initial values 

4 
Title and format 

graph 

1 

XI = (02 - Dl)/NI 
X = Dl 

I 

CD = 9 x lO9g 

Yl =-QxlOgg 

Indicate new 
area to graph 

domain, N 
and error in N (XI) 

L 

Set Dl = CX -XI 
D2 = CX + XI 

Rl = CY - RS/NI 
R2 = CY + RS/NI 

Advance paper 

Fig. 2. Flow chart for the graphical method. 
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graphically for the value of X (actually the reaction order n 
where Yl and Y2 are equal. Given two equations of the form 

Yl = f,(X) 

Y2 = f2( x) 

that intersect somewhere within a domain of X and a range of Y, the 
program will graph both functions at 10 intervals over a given domain. The 
domain of O-3 is used here for n. The computer remembers the X value 
where the two curves were closest. Finally the program calculates a new, 
smaller domain and range based on the interval containing the point of 
intersection and produces subsequently a new full scale graph of that small 
region. The process is repeated until the point of intersection is located as 
accurately as is desired. In most cases, it appears that three successive 
expansions provide an accurate value for X. Figure 2 shows a flow chart of 
this method and a program listing is shown in Appendix 2. 

TESTING THE METHODS 

In order to test the two methods of determining n, the (a, T) data 
obtained by numerical solutions of rate equations for various values of n 
have been used [lo]. The actual data used are shown in Table 1. However, 
selecting other data pairs from those published did not materially change the 
results. Very small values of (Y (< 0.03) should be avoided because such data 
have larger relative errors owing to the initial boundary conditions used in 
the Runge-Kutta method [lo]. 

The program for the numerical method is designed to display only the 
final n that meets the (L - R] < K condition and E/R. Intermediate L and R 
values can be printed or displayed to show the convergence of L and R 
values as n is iterated. In the present case, K= 5 was used although this 

TABLE 1 

The (a, T) data used to test the computational methods a 

n al T, a2 T2 (23 ? a4 r, 

0 0.03263 400 0.07 142 410 0.30693 430 0.60670 440 

‘/3 0.03246 400 0.07056 410 0.53996 440 0.89313 450 

l/2 0.03237 400 0.07015 410 0.5 1426 ‘440 0.82452 450 

2/3 0.06974 410 0.14317 420 0.77010 450 0.97868 460 

1 0.06893 410 0.13981 420 0.88562 460 0.98060 470 

4/3 0.06818 410 0.13666 420 0.80441 460 0.91931 470 

5/3 0.06740 410 0.13369 420 0.7385 1 460 0.85531 470 

a E=100kJmole-‘andA//3=3X10’0min-’ used in the Runge-Kutta solutions [lo]. 



201 

TABLE 2 

Computed results using the present methods a 

Actual n Iterative method Graphical method 

n 

0 0.005 100.115 0.000 11629-12429 

‘/3 0.337 100.050 0.336 11752-12552 

l/2 0.505 100.078 0.504 11534-12334 

213 0.668 99.913 0.672 11546- 12346 
1 1.001 99.926 0.996 11807-12607 

4/3 1.335 99.950 1.332 11524-12324 

5/3 1.670 99.959 1.668 11668-12468 
2 2.003 99.932 2.004 11516-12316 

E 
(kJ mole-‘) 

n E/R range 

a E = 100 kJ mole-’ and A//3 = 3 x 10” min- ’ used in the Runge-Kutta solutions [lo]. 

parameter could be assigned other values if desired. To perform the compu- 
tation, the (~l~ values are all entered (registers R, through R,) followed by the 
rrl, values (in registers R, through R,). Next, the trial n is set equal to zero 
(R.,) and An is given its initial value (in R.3). These parameters are later 
shifted to R, and R, after the q are used to compute the (q+,/T,)2 and 
((l/T,+,) - (l/T,). This is done so that changes in n and An can be made 
using register arithmetic which is performed only on registers R, to R, on 
the HP-34C machine. A value of An = 0.2501 was used in the present work 
so that n cannot be exactly 1.00 - - - . 

FIRST APPROX SECOND APPROX. THIRD APPROX. 

Range = 0 -20000 

Domain = O-3 

Approx. ” = 1.6 

Error in n _ +/-0.3 

Range = 10638 -14638 

Domain = 1.5 - 2.1 

Approx. n = 1.60 

Error in n = +/-0.06 

Range = 11668-12468 

Domain = 1.62 -1.74 

Approx. ” = 1.666 

Error in n = t/-O.012 

Fig. 3. Output from the graphical method applied to the case where n = 5/3. The entire graph 
shown in the Second Approximation represents an expansion of the small square (dashed 
lines) surrounding the intersection point in the First Approximation graph. The Third 
Approximation graph represents an expansion of the small square in the Second Approxima- 
tion, etc. 
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Table 2 shows the results obtained using the four-point iterative method. 
It is readily apparent that the method accurately determines n and E. The 
computation time is short when K = 5, and the results are virtually identical 
regardless of the starting value for An. 

A sample of the output from the graphical method is shown in Fig. 3 
using the (cy, T) data for which n = 1.66 - - - . The approximate value for n is 
determined as 1.8 + 0.3, 1.68 f 0.06, and 1.668 f 0.012, respectively, in the 
first three cycles. Similar results were obtained using the other (a, T) data 
for other values of n [lo]. Table 2 shows the values of n obtained after three 
expansion cycles for cases where n varies from 0 to 2. As presented, the 
program does not compute E directly, but rather computes the range of E/R 
represented in the interval considered. Consequently, the E/R value is very 
nearly the mean value for the range shown in the interval. 

The results shown in Table 2 indicate that the methods described here 
accurately determine n and E. These methods are rapid and are easily 
adapted to other calculators and computers. However, as in other methods, 
the accuracy of experimental (a, T) data will be of great importance in 
determining the computed values for n and E [9]. Considering the variation 
from sample to sample [ 111, such methods based on limited data may achieve 
as much accuracy as can be justified by numerical procedures unless the data 
from a great many runs are considered. 
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APPENDIX 1 

HP-34C Program listing for the four-point iterative method 

OOO- 
001-25 13 11 
002- 24 5 
003- 24 4 
004- 71 

00s 15 3 
006- 23 8 
007- 24 7 
00% 24 6 
009- 71 

OlO- 15 3 
011- 23 9 
012- 24 5 
013- 25 2 
014- 24 4 
015- 25 2 
016- 41 
017- 23 .O 
018- 24 7 
019- 25 2 
020- 24 6 
021- 25 2 
022- 41 
023- 23 .l 
024- 24 .3 
025- 23 7 

026- 24 .2 
027- 23 6 
028-25 13 12 
029- 1 
030- 24 0 
031- 41 
032- 1 
033- 24 6 
034- 41 
035- 25 3 

hLBLA 
RCL 5 
RCL 4 
+ 

gX2 
ST0 8 
RCL 7 
RCL 6 
: 

gX2 
ST0 9 
RCL 5 
h l/X 
RC14 
h l/X 
- 

ST0 .O 
RCL 7 
h l/X 
RCL 6 
h l/X 
- 

ST0 .I 
RCL .3 
ST0 7 

RCL .2 
ST0 6 
h LBL B 

RCL 0 
_ 

1 

RCL 6 
- 

hYX 

036- 32 CHS 073- 32 
037- 1 1 074- 1 
038- 51 + 075- 51 

039- 1 1 076- 71 

040- 24 1 RCL 1 077- 24 9 
041- 41 - 078- 61 
042- 1 1 079- 14 .l 

043- 24 6 RCL 6 080- 24 1 
044- 41 - 081- 71 

045- 25 3 hYX 082- 23 5 

046- 32 CHS 083- 24 4 
047- 1 1 084- 24 5 
048- 51 + 085 14 51 
049- 71 + 086- 22 0 
050- 24 8 RCL 8 087- 22 1 
051- 61 x 088-25 13 0 
052- 14 1 f LN 089- 24 7 
053- 24 .O RCL .O 090-2341 6 
054- 71 f 091- 2 
055- 23 4 ST0 4 092-23 71 7 
056- 1 1 093- 22 12 
057- 24 2 RCL 2 094-25 13 1 
058- 41 - 095- 5 
059- 1 1 096- 24 4 
060- 24 6 RCL 6 097- 24 5 
061- 41 - 098- 41 

062- 25 3 hYX 099- 25 34 

063- 32 CHS loo- 14 41 
064- 1 1 lOl- 22 2 
065- 51 + 102- 24 7 
066- 1 1 103-2351 6 
067- 24 3 RCL 3 104- 22 12 
068- 41 - 105-25 13 2 
069- 1 1 106- 24 6 
070- 24 6 RCL 6 107- 74 
071- 41 - 108- 24 4 
072- 25 3 hYX 109- 74 

CHS 
1 
+ 
t 

RCL 9 
X 

fLN 

RCL .l 
i 

ST0 5 
RCL 4 
RCL 5 
fX>Y 

GTO 0 
GTO 1 
hLBL0 
RCL 7 
STO-6 
1 
L 

STOt7 

GTO B 
h LBL 1 
c 

kCL 4 

RCL 5 

h ABS 
fX<Y 

GTO 2 
RCL 7 

STO+6 
GTO B 

h LBL 2 
RCL 6 

R/S 
RCL 4 

R/S 
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APPENDIX 2 

Program listing for the graphical method 

1: 

2: 

3: 

4: 

100: 

110: 

120: 

130: 

140: 

150: 

160: 

170: 

180: 
190: 

200: 

210: 

REM 
GRAPHICAL 
METHOD 
Tl= 410: T2 = 420: 
T3 = 460: T4 = 470 
Al = .06740: A2 = . 
13369: A3 = .7385 
1: A4 = .85531 
Rl=O: R2=20000: 
Dl=O: D2=3: NI=l 
0: K = 200 - 
NS=NS+l: GT$=“# 
“ + STR$ NS + ” AP 
PROX. OF N”: 

GRAPH 

GLCURSOR (16,O 
): SORGN 
CSIZE 2: ROTATE 
0: GLCURSOR (10 

204): LPRINT G 

To 
CSIZE 1: ROTATE 
3: GLCURSOR ( - 2 

58): LPRINT “L 
krR in Degrees” 
ROTATE 0: 
GLCURSOR (97, - 
8): LPRINT “IV’ 

LINE (0, 200)-( 

200, O), O,, B 
XI = (D2 - Dl)/(NI 
): X=Dl 
CD = 9E99: Y 1 = - 9E 
99: Y2 = 9E99 

FORL=lTONI+l 
Y=LN((l-(l-Al 

)A(1 -X))/(l-(1 
- A2)A( 1 - X)) * (T 
2/Tl)A2)/( l/T2 
- l/Tl) 
IFY>R20RY<Rl 
ORYl>R20RYli 
Rl THEN 230 
GLCURSOR ((Xl - 
Dl)/(D2-Dl)*K, 
(Yl-Rl)/(R2-Rl 

)*K) 

220: 

230: 
240: 

250: 

260: 

270: 

280: 
290: 

300: 
310: 
320: 

330: 

340: 

350: 

360: 

LINE -((X- Dl)/ 
(D2-Dl)*K, (Y-R 

1)/W-Rl)*K), 
0 
x1=x: Yl=Y 

Y=LN((l-(l-A3 

)A(1 -X))/(l-(1 
- A4)A( 1 - X)) * (T 
4/T3)A2)/( 1 /T4 
- 1 /T3) 
IFY>R20RY<Rl 
ORY2>R20RY2< 
Rl THEN 280 
GLCURSOR ((X2 - 
Dl)/(DZ-Dl)*K, 
(Y2-Rl)/(R2-Rl 

)*K) 
LINE -((X - Dl)/ 
(D2-Dl)*K, (Y-R 

l)/(R2- Rl)* K), 
0 
x2=x: Y2=Y 
IF ABS (Y 1 - Y2) 
< CDTHEN LET CD 
= ABS (Y I- Y2): C 
x=x: cY=(Yl+Y2) 

/2 
x=x+x1 
NEXT L 
RS=R2-Rl: DS=D2 
-Dl 
GLCURSOR ((CX - 
XI-Dl)/(D2-Dl) 
*K, (CY - RS/NI - R 
l)/(R2-Rl)*K) 
LINE - ((CX + XI - 
Dl)/(D2-Dl)*K, 
(CY + RS/NI - Rl)/ 

(R2-Rl)*K), 39, 
B 
GLCURSOR (- 16, 
- 20): TEXT: 
CSIZE 1: LPRINT 
“ RANGE = “; 

INT Rl; “J TO” 
;INT R2; “J” 
LPRINT“ DO 
MAIN=“. Dl*” TO , * 
“; D2 
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APPENDIX 2 (continued) 

370: LPRINT“ AP 
PROX. N =“; CX: 

LPRINT ER 
RORINN= +-“ 

; XI 

380: Dl=CX-XI: D2=CX 
+x1 

390: Rl=CY-RS/NI: R2 

= CY + RS/NI 

400: INPUT “ANOTHER 

APPROX.?“; X$ 
410: IF LEFT$ (X$, 1 

) = “Y” THEN 
GRAPH: 

GLCURSOR (0, - 3 
00): GOT0 100 

9999: END 


